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ABSTRACT

• /,_iFo
The problem of subharrnonic liquid response in a

container subject to vertical, axial excitation ha_

been solved to the second approximation '_by the

method of perturbation, employing characteristic

functions. Application of the integral equation me-

thod has been made so that numerical construction

of the Neurnann function and the characteristic func-

tions is possible, at least, for convex axial sym-

;_ill metric tanks. The method can be easily extendede_

to determine the liquid response in an arbitrary ,

tank but its limitation depends on t,he size of the
computer, the accuracy desired, and th

volved, rf

i_ * In this report, the example is c&rried out only to

the first approximation.

i
J

ii

, /• ii i
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SYMBOLS

a maximum radius of the tank in cylindrical coordinates

a_ defined in Appendix G

b maximum radius of F o for an axial symmetric tank

C1/2n , Cn3/2 binomial coeffic'ier, ts

Esls2 characteristic function of s 1 order and s 2 degree

E(ql) elliptic integral of the second kind

F o mean free surface; z = 0 plane

F free surface

i S) f(i, the Fourier sine and cosine coefficients of the aonhomoge-
f(n,'m' n, m neous term in the free surface condition of the i th

C)

approximation [c. f. , EQuation (Z6a)]

G Green's function of the second kind; Neumann function

g downward gravitational acceleration or added regular part
of the Neumann function

G o singular part of the Neumann function

h liquid depth

Int. () the integer part of () less o1" equal to ()

t [I] the unit matrix

p

_J

iv
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SYMBOLS (Cont'd)

• K(ql) elliptic integral of the first kindP

n outer normal

N a positive integer

Po ullage pressure

p static pressure

r,¢,0 spherical coordinates with origin on F ° (Fig. 1)

q, q magnitude of the velocity vector

t time

u, v, w x, y, z component of velocity, respectively

. W surface of the wetted wall

x o amplitude of vertical tank oscillation

x, y, z rectangular coordinates, z positive upward

z b vertical tank displacement

angle between two vectors r and r'

3' 0 -0'

6

5ij Kronecker delta, 6ij = 0 for i:_ j, 5ij = 1 for i = j ._

free surface elevation :::-:

PL densit_y of the fluid ,-,/,

p,O, z cylindrical coordinates _:_

• ,2-

t!
i i ii
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SYMBOLS (Cont'd)

velocity potential

mth characteristic function%

co frequency of. subharmonic oscillation

cok k th liquid sloshing frequency near which the subharmonic -
oscillations occur

_, vi
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SUPERSCRIPTS AND SUBSCRIPTS

()(_) quantities associated with _th approximation

()_i) the _th component of ith approximation

m th coml:onent of the _tb harmonics of ( )()_,m

( }(_,s) sine component of the _th approxin_ation of ( )

( )(_,c) cosine component of the _th approximation of ( )

( }(I,c) nth cosine harmonic of the m th component of the _th
-n,m

approximation

(n_,s) nth sine harmonic of the m th component() m

(_ iS not an average value of but related to ( )

%'>:b
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i IN TRODUC TION
The problem of fuel 31oshing is an important factor in the dynamic

stabilityof a spacecraft. Relatively extensive theoretical and experimental

researches on this subject have been reported. A luel sloshing monograph

(Ref. I) is in preparation by Abramson, et al., for designers and research

workers. Consultation can also be made to References Z and 3 for literature

prior to their publication, respectively.

Most of the literature kno_,'n_.ou_:err_linear fuel sloshing due to

the lateral motion of the containers Near resonance, rotational and

nonplanar motion were observed (Ref. 2). The stabilitybo._ndary of a

circular cylindrical tank has bee, predicted by lqutton (1_'ei._) through a

t

simplified third order theery. The same theory had been _-._olied to non-

linear force responses in uc-,Dp_r_mente:l tanks (Ref. 5 : !alr agreement

with experiments, Nonlinea1 shell responses of br_'.'l ,._modes had been

observed and reported in Reference 6o These phe '_,e_a include softening_

of zero force response, jump in amplitude and in:_:abilityto beat-type shell

response wlth nonsinusoidal periodic low frequency liquid motion, (Refs_ 6, I0).

Quantitative nonlinear analysis for a breathing tank would be laborious as

evidenced by the prediction of the natural frequencies (Refs. i1, lZ)

•For standing gravity waves in a rigid rectangular tank. there is a transition

yi_I . depth below which the liquid amplitude increases with the frequency (bardening),;_:_ Refs. 7,8, 9.

] 96600290 ] -009
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w

which may require as much as ten terms or more in shell modes; _ qualitative

theoretical study, which isin progress, willnot be presented herein.

" The problem of vertical (axial) excitation was probably first

investigated by Yarymovych (Ref. 13) for a rectangular t_nk, while the

large amplitude surface waves were studied earlier in References 11, 1Z.

Taylor (Ref. 14) obtained 1/2-subharmonic motion due to lateral excitation

when trying to obtain large amplitude wave profile near the lowest resonant

frequency. Yarymovych anaiyzed and measured 1/2-subharmonic vertical

excitation. The measured surface response curve in Reference 13 is in

good agreement with the third order theory (Ref. 4), although the error of

prediction increases with the maximum surface displacement as expec*-ed.

Capillary waves, spray, and effect of damping were also discussed in

• Reference 1?. Subsequently, Dodge, Kana andAbramson (Ref. 15) studied f

the subharmonic motions in a circular tank under vertical (axial) excitation. D

The stability of harmonic response was shown to be governed by the Mathieu

s_ability diagram which was converted to stability regions in an amplitude
y

versus frequency plot. The 1/2-s'abharmo.nic motior, was observed and ._.;,'¢

compared with a third order theory. The theor_ yielded fair amplitude :'e_,,r_.

responses in comparison with measured data. :_;_',;'_

,.]P

In Reference 16, the finite amplitude standing wave in an arbitrary -_

tank was studied by Moiseev. It also indicated how the analysis can be _°_

extended to the Kravtchenko problem, a tank with a partially moving wall. ,!_.

• _i

1966002901-010
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Furthermore, Moiseev considered only superharmonic response to the
• i

exc_tat-.on fcrce and did not indicate how the characteristic function could !I

" be constructed. !

i
The present paper follow_ Moiseev's approach, employing a

perturbation method and characteristic functions for the subharmonic

response to an oscillatory axial e-:citation. The integral equation method

for the numerical construction of characteristic functions analogous to

= that in Reference 17 is devised, so that actual predict_o._ or correlation with

experiments can be made.

t

I
r m_ i m it m n
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• FORMULATION OF THE PROBLEM

In the vertically oscillating tanK-z_x_u............ _vu,u_,.=_._o_:-_+_-(F,_g " I_ the._s, __

equations o£ motion* are

,_"u+uaU+vaU +wa__ _ , a__ (,a)
at tx 8y az PL 8x

a-.-ZV+ua---Yv+vaV+waV _ I 8p

8t Ox 8y 8z PL 8y

__ 8w 8w 8w 1 8p +NZ_Zxocos(Nc0t) (lc)8w+ u +v-- +w-- = --- - g
Ot 8-_ ay az PL az

where the last term is the inertial acceleration due to the vertical oscillation

zb = xo cos (Net) (21

Assuming that the flow is irrotational, there exists a velocity potential

such that

"@

v¢ = _ (3)

where _.is the velocity vector in the oscillating frame. Integration of

Equations (la-c) yields the unsteady Bernoulli's equation in the oscillating

frame

-/s

Po (4) ,_/8@ 1 2
8"-[- +[g - NZeZx° cos (Nc_t)]z+-P--+'gq = f(t)+--

where Po is the constant ullage pressure and f(t) can be absorbed by the -_,.:._:_"• • j._-

velocity potential @. The continuity equation and the irrotationality :t
9

condition yield _ , .

v2® 151 _
• ,,¢.

_u

: "i'i[

• *All equations will be given in the tank-fixed coordinates unless specified ii _i
, , _:_.

otherwise, ' _,_.

-m m _, _ lmm m m m mm_m m m mm,_ _ m, m • m mmm mmmm w, _ _ mw m mmmm,- mm
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Assuming that the tank is rigid, then in the tank-fixed frame the normal

e

velocity to the wetted wall, W, must vanish, i. e.,

' a____= 0 on W (6a) -
an

On the free surface F, assume that the free surface curvatures are small

so that the surlace tension can be neglected. Further, assume that the

gravitational acceleration is not small so that the surface elevation will

not be too large for applying the free surface condition on a flat plane

z = 0 through T_.¥1or's expansion. The dynamic condition is p = Po on

F and

[.__. NZ Xo 1 Z] = 0 onF (6b)8¢_ +[g. cos(N_t)] z+_ z =p

Finally let the geor_,etric equation of the free surface be

" z - _ (p,e, 0, t) = 0 (7)

Then the kinematic condition is

w - a¢ = at +a¢¢
az at ap ap pa0 p88 on F (8)

It seems convenient to use the cylindrical coordinates in which the unperturbed

frozen free surface is z - O. ,_.2_,

In this report, the _.nitial conditions will not be imposed, as part of ,-_t

the general solution, which depends on the initial conditions, will be damped -_

out in a real system _ith damping, The part annihilating the secular term .4!
O'

,,,,
must exist* in order to render definitely a nonlinear periodic solution.

*There is some argument which indicates that secular terms can appear in :.__-

a finite term approximation (Ref, 18). .,_

|
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"i " METHOD OF PERTDRBATION

|
l ' In this report, the anaiyticproblem will be solved by the method of

perturbat'_n, enlployingcharacteristicfunctions.

Let _m be the m th characteristicfunction satisfyingthe Laplace

equation _nd _he conditionsof

8_,m
- 0 on the wetted wall (9)

an

and

8_m !
a'--"_ = km_,m(X, y,O) =kmg, n_X, y) (lO)

z=O

Assume that the tank is axially symmetric. For simplicity, the character-

istic function, g'm, will be said to be proportional to cos imO ). In reality,

there could be more than one mode for the same cos (toO) variation. For

finite term approximation_, one may consider

_n = Esls z (11)

where, letting Srn x and Mmx be the number of columns and the number of

total elements of Eslsz, respectively,

m = Smx(S 1 - I) +s z (lla)

sI = Int. Srnx" + I (llb)

s2 = m- SlSm_
M

mx (llc)
O<-sZ_Smx, O<Sl &-- , O<_m<_ MinxSmx

1966002901-015



7

and the m th characteristic function is proportional to cos (s18).

• For the m th vibrational mode of infinitesimally small amplitude

• without motions of the tank, the free surface elevation and velocity potential

are, respecti,re!y,

,(_r) Aq_rn ix, y_ ._in G,__nt_ _ (12)bm -- -- , -- ,- •

¢_r) = Ag_m(X' y,_.)cos(comt) (13)

where

F _bm( ' y') ds (14)
• m(X, y,z ) = km G(x, y,z ;x'y', 0) x'

It is understood that

_m(X'Y' 0) = d?m(X,y) (14a)

After the characteristic function is defined, one may expand the

• velocity potential, _, and elevation, _, into a power series of a small

parameter

co

¢ = en_ 0nen (15a)=0

co

= e z _n # (lSb) ,.;,,._,
n-o : :},

Moiseev in Reference 17 defined a nondimensional time ......

t_ k -:

r = oo n (16a) "_

ohn ":1 +n=_ ¢ ,f'!:
I!

In the present problem, one must further assume _

co = (!6b)

1 + _ hn_n _ ._._

,

1966002901-016



so that cos (Nc0t) in the time dependent coefficient will be cos (N_), a function
R

I " of 7. Let the nondimensional tank amplitude be

I x o
-- = Xo* C (17a)a

i This is a simplifying assumption as Xo/a may be also expanded into apower series, of cas t, but there will be more than one unknown constant

$ 1,
for a given x o. If _ is defined as the amplitude of the tank motion, x o =

then as amplitude approaches zero, _ = ¢ok/h o which is not amplitude

dependent as shown in experiments for a circular cylindrical tank (Ref. 1 5).

H a is taken as a parameter defined by the frequency c0, one may assume

¢°k (17b)

ho+hl +

where h I ¢ 0 will be" shown for 1/2 subharmonics, N = Z. For N = Z,

,' h2 ¢ 0 will also be assumed later, With the exception of Xo$ in the

equation, the superscript star will be used to indicate a nondimensionalized

quantity; length being nondimensionalized by the maximum: radius, a, of

the tank and frequency by the k th natural frequency, _k" Then one has,

for instance,

, , _Z 2.2 (18a)rd_k

oo oo

_l* = 2_ _b @m(X,y,z); _b* = Z e4*_ (18b)m--o ,--o

":'_J 2 oo (t_l)_m (x'

_'.., _ (x, y, 0) =
m= 0 ¢_ Y) (18c)

_1 "

II Nil ii i ImlI "Ira" I _11 _ _ • mpmm m ill IWnlI mg ilmm i /f I/ m iii mmum_mmmm|-
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f

[ , x
GO

a--_j = _" 0*mkm*m( ' y) (18d)
z=0

• . co _(ml)_om; co _;_-" = 2: _ = 2_ _1 (18e)
n=O I=0

The second superscripts _ and c will be used to designate quantities

associated with sine and cosine harmonics, respectively; e,g,,

_(1) co (l c) co r(l, S)sin (n'r) (19)m = _ _ ' cos (nT) + E _n,m
n=O n=O

The boundary conditions on z = 0 are derived in Appendix A. _,

By equating terms of equal powers of _, solutions by the method of

perturbation are found. Approximations up to the second order are given
t

in the present study.

• Zero th _.pproximation

In the zero th approximation, components of the velocity potential

are governed by

- 0 (ZOal "
Or 2 az* " 2,

1 aeP*o "
_) = (ZOb) _,_

g*h o 8_" .<:_:
"7

It can be shown by Green's theorem that the characteristic functions :
¢-,

_Y

_m(X, y) are orthogonal on the plane, z = 0. The m th component of ,'_,

,9
Equatimi (ZO) is ;g

-- + g* ho2 = 0 ( Z1) _/:_::.

i, .,Y_i"

1966002901-018
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10

ioe,,

i B2 )

,_2.10_
+ho_" = 0 (21a)a_2

form = k, t., ''_ = !

• ! a.---7-__+_ _k = o (Zlb)

l The oscillation of the period, 2Tr, in the nondimensional time T

is sought in the present study.

Assume that _ is not an integer except when m = k, for which_m

= I. Tb-ls, in Equation (22b)m

ho = I (22)
(0,c)

_(0, c) = A'g* oz #p(0, s) = B_g_ (23a, b)l,k 1,k

From Equations (20b), (22) and (23)

_0,,k_ .(0, c)_(m0) = 6mkSk[_ ")sin7 + _l,k cosT] (24)

g0,s)= A*, _(o_)= -s* (24a,b)"l,k

In the first approximation, it will be shown that either A_ = 0 or B* = 0.

In order to have a linear velocity potential inphase or out of phase with the

_, velocity of excitation, A* _ 0, B* = 0 will be selected. Otherwise, the choice

iil might be determined by a stabilityanalysis.

_l /._the case where B* = 0, the velocity potential and surface elevation

I for the zero th approximation can be written as
• _*_= oo N (O,c) oo N _(0,s)

-O m n= m=l = l'n,m_I _0_bnm _mcos (nT)+ _ n_. _m sin(nT)

= ¢(0,c__mCOsT (25a)l,k "

'¢ m ' -- ................ d -'" lib

1966002901-019
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co N _(0, c) co N .(0, s)
* = X 21 _nm _m c°s(n'r) + X 23 _SmSin(n'r )_0 m=l n=0 r.=l n=lgn, m

4,(0, s) d;ksin, r (25b). = Sl, k

nm -nm ' = -nm -nm

with

gp(0,c) (0, s)nm : 0. _ : c (ZSab)' nm

_o_ ) ,(o, c) . _(o, s) = o (ZSac). = 6rok6nl 1,k ' nm

and

_(OrnS) = _nm(0' s) +-_(0,_nmS) , g(OmC ) = _(0, c) +i(0, c) (25ba)nm nm

(0 s) = 0 ; _(O,c) = 0 (25bb)

_(o,s) ,(o,s) ; _(0,c) o (ZSbc)nm = 6mk 6nl % I,k _ nm =

First Order Approximation

In the first apprcximation, one collects the second order terms

to get

az,_ ) a,_) N,I N+I
--+g*m .... 23 f(l'S)sin(n'r)+ 22 f(2mC)cos(nr) = Rima_ 2 8z* n, m

n= I n = 0 (26a) i_
q

%

The dynamic condition yields ,,_' .(

-- +hI + zgo*go*ho
,[t

g *_o }
N2t*x * cos (N_') + 1 8 2 ..:_,

=o o g i: ! Ok I on F (26b) ,} "_,

In general, on F o, by expansion into Taylor's series and recollection of '_'_ _"
• ,,! :_

equal power terms, the dynamic and kinema ic conditions are: _,,tl,_

'_ _ _a a _m m m m • mm m m mm n • ===_w_mm •

1966002901-020
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I 8_n
_.+------ = (2Va)

hog_ 8_" Rdn

_n* aCn
• _- ho-_--_-z_" = Rkn (27b)

where Rdn and Rkn are given in Appendix B and C, respectively, for

n = 0, 1, 2 and 3. As a result of Equations (27a, b),8_4_n 8Rd n

i a_'2 4hZg* 8z4Pn = hog* = R (27c)

-- o 8zZ 8"I" ho g_ Rkn n

"' For convenience, the cylindrical coordinates will b . employed

in which dx i (i = 1, 2, 3) are

dx 1 = dr, dx z = rde , dx 3 = dz (28)

It is found that

,s) = Ix,B$(N3_N2 ) k6n, +I +--Xo $(N3+NZ)fil, m Z o 6m, N 2 5m, k 6n, N-1

Zg*h, 5m, k 6n, 1 B_' +I I 2 1 , ,Skb k , 2
- CJs

2 = 1 '--_m z

'+ kk2 I-_--fFt_1_¢md_{A*Zg*ZaZm " B*Z) Sn, 2 + f(l's)mna (29a)

f(nlmc) t=_-xoSB*(N 3 N 2) 6rnk6n, N+I +Ixo_B*(-N 3+Nz)6mk6n,N_ 1

I .,a¢k,2
"2g_'h16m, k6n, IA_'ASB*g*ZSn, 2 i__I 2"7mF](8- _) t_mdS

+ k_ 2 a___m,_ _mdS_ + f(1,C)nma (29b)

] 96600290 ] -02 ]
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whc r e

8 2,_k

. ,/= - ---- _mdsf(l,s_ 1 (A,2 B_2) 6n, hoZg*2 0?k 2._ma' _m_ k _" Z 2 8z*
o*m

/ 0_k (Z9c)+(A *z-B *z) Sn,zSmkJ_ ¢_.%ndS' _*

f(1, c) . 2 #2 1 / 82_k _bmd snma = hog" (-A'B*) 6n, Z6mk_ 0?k 8z'2

1 / 8_k
2g* (A-*B*) 6n, 2 -_ _k-- _mdS (Z9d)

m 8z*

In order to have periodic first approximations, one must not

have nonzero resonantharrnonics. Hence f(1ks) and f(/kC) must vanish.

One has

• , - x*B,(N3+N2) 61, N 1-2g*hlB* = 0 ,30a)Z o

• c) = ix.A* (- N3 0 (30b)
f(?,'k Z u +NZ) 61, N- 1-2g*hlA* =

As stated under Equation (2.4).+ the inphase or out of phase solution

is selected for which "

'.B+ = 0 (31a) _+:

o*-X - X .___

hl = _/__I. I x*(-N 3 + N 2) 6 _ =--6N,Zg* _ o I_N- I g, 61,N=I 2 '_g* ,,+Li:

(31b) .. ,"_

The discarded solution is ._.

A* = 0 (32a) __
K_

I I Xo

hl 2g* p.Xo*(N° + N2) 61.+N- I = 3 _ 6N._z (3Zb) ,,_.

• A¢

] 96600290 ] -022
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For I/2 subharmonics, N = 2. If A* _ 0, B* = 0, then

- x_:
• h I = _ < 0 g* = -g--

g* - _a (33a) ;

L_B*_ 0, A* = 0, thenh 1 =__>0
g* (33b)

If h Z term is negligible,

_k

= 1 +hie (34)

case as ¢--- 0+, Xo_e r_mains a given positive constant,
In the first the

limiting frequency is higher than _k" In particular, the limiting values

are in good agreement with experiments (Ref. 15) of a circular c,flindrical

• tank.

• The first order solution is completely determined with

N+I _(l,,_)s N+ I _(l,c}
,,(1) _ in (n'r) + _. - (n'r) (35)
_'In = n=l n=l _n,m c°s

_b(1) = N+I (j, mS)s N+l-(l'c) tv,r) (36)m n=_l + ' in(n7) + 1_ CPn,m cosn=O

c_ where
¢(1, s)

1_ ,(J,,m l) = _(J,.s)+ 6n 1 6mk?tk 1, s); _1, s) _ -n,m (1-6nl6mk)• ---.-..-----.--- _. vnm g*m" n2 (37a)

= 6_,__(1, c) _(I, c) £(n_C)(l " 5nl6mk) (37b)_(l,c) _(I,c) ;__
n, m n,m zzu_ Ik -nm g*m " n2

i(ll, 6mk6nl

1 TH(I, s)}" + hlA*g* 6mk6nl " N2x_A*6mk (6n, N + I " 6n, N - 1)_ + --nm

- _(I,.) I - .(I, c)
_,nm + _" _'l,k 6mk6nl (38a)

1966002901-023
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r

(l.c) 1 fnm _I- OmkOln)n (I.
• - ..... + f Ik S)6mk6nl

_n, m g* " g*m - n2

,-. ::°%" q• 1 N (A'g*) Z 04.nds 1 (6n, ++ Z" i= 1 F\0x. / _ 0 6n, Z
1

I_,,z[I l o+ .(i,c)].
+'_ k L:t--_-m/hi_kO?mdS](A*g;;;)Z _(6n, 6n, Z'+T_=nm J

. '+ _ 6m, k (6n,2 - 6n, - g_ 6rnk6nl {38b)

~(1
_l,'kC) = 0 (38c)

_(1, s) _,{h _qZx°*A* }lk = - 1A-g* + 2 6N, 2 (38d)

(l,s) (__I6 ½ ) __/ 2 ) 0 (38e, f)Tdn, m -- Z n, 0 + 6n, 2 A*2 I ; Td(l,s =• nm
aZm qJk*m ds

I(2 -:(Z,c)f , s) and ilk have to be determined from a third order equation by the

condition that the solution is oscillatory au 1 _.f per,-od 2w, or the coeffi-

cients of the first harmonics in the nonhomogeneous terms must vanish.

From f_kz' s) = 0,

a(2)7(1, s) (2)_(1, c)_ _2) (2) 2N3-N 2 (Nl, C) _ _II "Ik + alZ Ik - R = Rla 2 Xo*(l" 6NZ)g - l,k _-"

(39a) "_;":

f(2,c) O, ::_,
from I, k = _..

<

- ..2,
whe re _ _'

i :

a_ZZ) 0 (40b) _ :e,

,o. ....... _ !
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a(Zl) = 0 (40c)

(Z)
a22 = 0 (40d)

Equation(39a) determines_(1, s)lk Equation (39b) yiclds h2 as a function

be dam1_ed out in a real system; hence, it is assumed to be zero.

The nonhomogeneous terms are

_= I Li= I ak " I

I .(1, s)_(O,c_}+1_(O,c) oo z I fa_ka_

• -'.,o.c, ,_!
zqhk m=li=l_kZ _eq'kds'

• Ika

(2) 1 2 _(l,s) s) ( 1 )Rza=--zN %*(1-6Nz)_N-_,k+6NZ_(_k -__Zx_

.2hlg,i(l,s) .,_2.(O.s) I c_ _l,k _b2_ ) _ l__ ."Ik -s "'Iblk -_=l i=l akz •

• -- _lka

2m=l L 1.,k 2m X_ m a_ (41b)

(z) (z) (z) (2)For N_ Z, hI --0, a 11 = alZ --a = a22 = 0. BothA* andh 2

_===_

are determined by Equation (39b) and _']uation (39a). Both _(I, s) and _(I, c)
• lk Ik

' are set to -ero. Since ¢ is stillarbitrary, one may use A*¢ as the given
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liquid amplitude. Further investigation may be necessary to show if this

process leads to a valid solution.

The second approximation (third order terms) has not been

-(2, c) 7(2, s)
completed but can be determined similarly with two constants f l,k ' " l,k

governed by two conditions of no secular terms.

CONSTRUC TION OF CHARAC TERIS TIC FUNC TIONS

Method of Separation of Variables

It is easy to show that for rectangular tanks and circular cylindrical

tanks, the characteristic functions and eigenvalues are

• _ ao, _bo/ kV,o2 Soz

mZ nZ tanh_../-_ + nZ
• )Lmn _= --_-+ h (47b)

and

Emn = 5m( -_mn _a)C°s(mO)c°sh(kmn(z+h) )a (48a)

kran tan :_
kmu - a -- a (43b) '_

where a o and b o are the length and the width of the rectangular tank divided . '_".Si'

by 2_, and the_nn are the roots of J_ (_mn) = O. "_'-=

These characteristic functions were constructed from the method "_

of separation of variables; they were probably not recognized as character-

f)-

istic functions. However, itis well known that this method is not suitable

for general application. ._
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Integral Equation Method
e

The characteristic functions satisfy the Laplace equation, and the

boundary conditions are given in Equations (9) and (10). The characteristic

function on the free surface can be determined hy the integral equation,

Equation (14), with z = 0, pro_:ided that the Neumann function on the

boundary is known or can be constructed. The Neum&nn function is

singular on the boundary when Be field point and the source point coincide.

For a spherical tank, a numerical method for constructing the Neumann

function was given in Reference 19. The Neumann function constructed

was symmetrical and yielded satisfactory eigenvalues. However, Reference

19 finds an addition to a known Neumann function which possesses constant

normal derivative on the wetted spherical tank wall. For a general tank,

itis easier to construct the required Neumann function directly. Itwill

be seen that the incomplete e11ipticfunctions do not enter the present

methcd, and thus considerable time can be saved for computing matrices

of a higher rank. The increase of the rank of the matrix is due tc the

presence of integrals on the wetted wall which can be eliminated otherwise.

Lu principle, the addition to a unit sink is to be found numerically

to yield the Neumann function. The characteristic functions are calculated

next. Then the coupling integrals and the nox_malizing constants are computed

, with the numerical knowledge of the characteristic functions at a finite

number of points.
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Let

G = G O + g(P, Q) (49)

aG = kl = - 1
8--_ AF + AW on W and F (50)

W and F are the wetted wall and the free surface, respectively.

Green's theorem states that

_b = f G - dP_n ds (51)
W+F

A new definition of _bcan be made to absorb a constant term* and

yield

IF I_4'v dSl = kvl G(P'l)_vdS'Fo .. (52)
_bv = G(P, I)8n"

o

where

_v = _v(x'7,z),_v(x,7,o) = _v(x,7) (5Za)

For practical purposes, the tank will be assumed to be axial

symmetric.

Let

_v _v(P' eFo )c°s(vo)_bv = (r,¢)cos(v0); _bv = (53ab) -

)'v Tr 2_"
= vG(r, ¢,0;r',ff',e')cos(v0 ')dO'dO (54) .

@v(r'¢) (1+6ou)= 0 0 ., "

Integrating Equation (52) with Equation (53) yields ,'_
.,_

*As a result, the average value of _v over W + F is zero, i.e., vdS = 0. _ ,_,_o
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2Tr 2_"

kv ._/ / _vG(P._Fo.0;p'. )cos(v'O)cos(vO)dO'dOp'dp'• _v(P) =(I + 6ov)_ 0 0 _F°'O'

b
I I 1

• _,,(o): x fH,,(o, o'),,,(p )pdo (SS)
0

where

Hv = Hov+_v (56a)

H°v-- =(1 + 6ov)_l 0 Tr0/ G°(P'°'F°'O;P"eF°'O')c°s(vO)c°s(vO')dO'dO(56b)

2_r 21r

hv =(1+6ol,,)1'of of glr"%-'°'e;r'"';F°'e')_°sl"e)c°'_l"e')de'de(56c)

Let

_(n) is governed byv

b

n f (n) _,
kb(n)(P)= kv [_-Iv(P.P') PN[_.P'] _bv (v )dp' (58)

Analogous to Reference 19. Equation (58) can be approximated by

the matrix equation

(k____nb)[.(n)_= {,(n)}N 't,v j [Avl :59)

where .

Avik = HVik + Cik (60)

_ (o) ' [I 4k .(c) 1 4i _)]

= Z Hij +-- Z H (60a)
"u"ik _ i=4k- 3 4 j=4i- 3

• Cik = g [Cik + Cki ] (60b)

. H_o°) =_ % (,_,,j, (_oc,

m | .......
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First one must evaluate HAy and then Cik. For simplicity, the sink alone

will be contained in Go. Hov has been expressed in terms of elliptical

functions in App_-ndix G. The integral equation governing the added part

h is (Ref. 19) _,

- dg I

W+F o

dg I

f [_°v(I' Q)r4"_QrI][4_rIrphv(I' P)'_I (61)
W+F o

i

Let

gvi j = _v.(rirj).. _ (62a)&

• 1j

_:]vji = %/r_-_ _ov(rirj) (Note the order of j and i) (6Zc)

where_._ov is given in Appendix G, Then, taking b = 1, Equation (61)

becomes

1 _ /i dr. Z,_ .2 gvjl _ _jl vij 3 lr + r_dcj
0""_

2

+ 6 4._Z _" (o) /,dr.', ,'!_f ",,^It::-_-Iz_r2_i% "._
°VAF + AW Tr ji V kdo-j / 3

Z .;
?

+ 50 4,rZ /H(O). rq77_.r. _ (v AF+Aw vii rirjdpj ,_

_ . tgvi +' _ (631 "_'

provides a check of the precision and the ,;!_,
• *The symmetric property of gvi j . ._correctness.
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H

= ; = + r2 d_ (63a, b)

. 2

Equation (63) can be solved by the four point midpoint ,_ormula as done in

i
Reference 19.

i Let N F = number of basic intervals on F o, N T = total number of

I basic intervals on Fo + W'. _"or j < 4N F
-_" + (j - 1) (64aa)*

pj= r. =J 8 4

_ 1 (64ab)1

_ N F
|

I _vi/ = FVL _ (64ac)• l,:orj> 4NF + I

_j = w 1 (64ba)
2 NT-N F

rj = r(_j) (64bb)

i £j1 £j + (j_ 4NF- I) _- + -- (64bc)_J = 8 Z

#__dr. Z

_vji = 9vjL _%/(d'_j) + r_ (64bd)

For i <_N F

- !

&i = N---F (64ca)

/x.
+ (i- 1)_X i (64cb)Pi = ri = Z

i

_ _'Sub'scriptj here for integration variables.

I.

I
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Fo,'_.____>_"F + I

• 7k - _r l

I Z N T - N F (64da)

' Xi
=i = _- + (i- N F- i) 7_.+--_ (64db)i Z

:i = r _(°'i) (64dc)

Then Equation (63) can be approximated by the following matrix equation _

_[c] = - [M] - [C] [D] (6S)
/_,

The element of C is

= (66)
Gik gvik

The element of [D] is

4k 7X.

• D.id = _ --/-" (67)

j=4k-I 4 --_vi_

The element of M is

where

M(1) = T _ H(O) (68a)

i! j= 1 4 _vij vij _.
e

M (2) -6 4wZ 4NT "' _
= _ "_" fij" (o1 (68b)

i! ov AF+Aw _ 1 4 nvl j ._

For j < 4N F """

• f

| ......I

196600290 ] -032



7; ";

For j _> 4N F + 1

• I(!2 -
fij =_/_% / +r_ • '/;2-q_ 168bb)

r i is given in Equations (64cb) and (64dc). Cik is given by the r_,atrix

solution

" [C] - -[M] _ (69)
![i] +[D]2

The symmetric property of Cik should serve as a check of the accuracy

and correctness.

After the Neumann function is found, the characteristic fanctions

can be solved numerically from Equation (59). Then the coupling integrals

can be calculated numerically. Some notes are given in Appendix I. After

the coupling integrals are evaluated, the free surface evaluations can be

• calculated over one period from its series expansion.

• Numerical Finite DiHerence Method

It is possible to write a relatively general computer program for

a domain with irregular boundaries to determi'ae the characteristic

functioc.s as well as eigenvalues, (Ref. 20). It is hoped that the integral

equation method is more economical.

EXAMPLES OF 1/2 SUBHARMONIC LIQUID SLOSHING

The 1/Z subharmonic oscillations of a liquid in rectangular tank is

calculated fo r comparison with available experiments {Ref. 13). The theoretical

results based on three assumed modes (_ = 0, 1,2, n = 1) are shown in

Figure 2 and are in good agreement with experiments. The disagreement

increases with amplitude of liquid motion)as one would expect from a

• first approximation. The approximate theoretical solution is:

!

-_'*_'r "_ ".' '_ _ m_ "_',.............. _ ' "_..... .i_ ....... _" _ ""_*"_' '* ........ wI" ---_=........ ; " * .... ":"
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l
_=

_2 I x* I ,Z. - ---x + A'2116
b 2 b o

• A T_ "= (l-3x_)A*o ," A*o = A*e

as k = 2 and g* = I. x_ is the nondimensional amplitude of expiation.

Ao_ is the amplitu_le of the linear _.erm of the first harmonic.. A_ is the

approxilnate total liquid amplitude at "r = 90 °, which is approximately

one half of the maximum amplitude.

In general, the limiting value of zero amplitude I/2 subharmonic

response is given by

_o - I

l - g--, - g*/

The theoretical values based on Equation (70) are compared with

e_perimental valaes (Ref. 15) in Table I.

TABLE I. LIMITING FREQUENCY RATIO
' OF A CIRCULAR TANK

i IMocle _m= ,, n= 1 i m= l, n= 1
I

[x_/g* ! .OZ4Z .0403 t .0173 .OZ3
' (_Oo/_ak) t_.leo, l. 024 l. 042 l. 018 1. 022

i

(COo/ink)exp. I. 023 1. 04Z 1 1. 014 1. 024!
'hl(2a) I/4 i l

t,, !
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Preliminary unpublished data of a spherical tank and a sector tank

were also compared with the theoretical value, by" the agreements were

• only ;air (Table Z). The main difference is most likely caused by damping

due to geometry of the tank.

TABLE Z. LIMITING FREQUENCY RATIO FOR A

SPHERICAL TANK AND A SECTOR TANK

Tank Shape Spherical Tank 1/4 Sector Tank

Mode m= 0, n= 1 m= 2, n= 1 re=Z, n= Z

x{ 0. 00853 0. 00642 .01364 .01364

coz, cps 3. I (exp) 3. I (exp) 2.476 (theo) Z.776 (theo)

• 0_o, cps 3.16 (exp) 3. 125 (exp) Z. 5Z (exp) Z.845 (ex_)

g* .Z666 .2666 I/3. 054 I/3.83Z

(_o/¢aZ) theo. 1. 032 1. 024 1. 043 1. 058
I

(¢_o/¢_z) exp. I.019 I.009 I. 017 l
1. OZ6

Remarks d = 2a = 7. 625" d = 2a = 9.75" '

h/d = 1/4 I h/d = 1

?:

,4

No example to show the new procedure of numerical construction _"_'

of the eigenfunctions has been made at present. !if. :.';'.
•- , t_

'7
oj
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CONCLUSIONS AND DISCUSSIONS

A theory to the third order is developed for subharmonic oscilla-

tions in an arbitrary axisymmetric tank. This theory is applicauie to a

regular sector tank ifthe partitions are sufficiently rigid. The direct

suppression effectof the tank wall on the free surface has been neglected.

This effect does not exist in the rectangular tank or the cylindrical tank

since the side walls are parallel to the z-axis.

For a rectangular tank, the frequency amplitude response is in

good agreement with available expe.iments. In this example, the new

procedure of generating characteristic functions through integral equations

• is not needed; hence, an example, such as a spherical tank, is desirable

. to examine the new procedure.
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APPENDIX A

Derivation of the Boundaz_ Condition'_ on F o
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APPENDIX A

• Derivation of the Boundary Conditions on F o

The following relations were employed repeatedly to obtain boundai"y

conditions of equal powers of e on F o fromEquations (6b) and (8).

The product of two infinite series,

co oo co co co 1

m= 0 n= 0 m= 0-..=n_ I= 0m= 0

The product of three infinite series,

co co co co oo e

_" hn " 2] fm 2] gn = 2] hn _" 2] gl-mfIn

n= 0 m= 0 m 1= 0 n- 0 _= Om= 0

co k 1

• = Z 2] h Z g_ f (AZ)
k= 01 = 0 k-1 m= 0 -m m

Higher order products can be obtained analogously.

One may either expand every term in Taylor's series from the free

surface F to the mean free surface F o, or collect equal powers on F th_n

recollect then_ after expanding each term from F to F o. The latter was :_.

employed for collecting terms up to _4. ;_

Only th .Londimensionalized equations are given in the following _: '""c

(length nondimensionalized by a, velocity by cok a, acceleration by ¢0Za).. _
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The components of the oynamic free surface condition are

.

, )
1 "g#h---'_ [ °8"r + hl _-"_" + 2_g°_h° - N2_°* c°s(N'r)x°$

i=l_ _, no + _ \ 8z* ] h° + T*dl (A4)

*" ! f. 8_bZ + hl 8*1 + "'2 ( ad_0 + Z "*a*h '_•_z- g*_'C° %7- %-;-_ B-;- _0o o

+ g, (hz_*+ zh% q) - NZt*x*cos(Nr)" _1 U '

+ i=1=lh°_ax*} +h_ax,j a_.*a-.*

• ( }+ hlh0\az* / + T_ z (A5)

a,_ a,T a,B___ l h0a*_ _+h3
" g*h"--'O 8"r 8"r _

+g*[Zhlho_+(Zhzh0+r,I)q + (Zhsho+ Zh1_z)_b_1

- N _*x*cos(N_')+ L(h2ho +_1 h_) i_l _r 1

_[: _ _z-'-_ _z*/ '+ho i = _ ax* _x.* t}z* a.-.*
1 1

i$,,i 2 i = 1 8x.$ 8x.$ _ \ 8z* / T_ 3 (A6)I i

!_i " where T* ts are given in Appendix B.
dn

",m
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The components of the kinematic equations are

-_-ho_-O8T 8z* -

- h 1 + h01 2_-O--_--" hosz* 8z---_ '= 1 axe 8x* T_ 1 (A8)

_V- - h°_fz, --.- \- h_.a-.---;- hza--_.*+h, i--=1ax._ax_

+ h z _ + Tkzi= 1 ax,* ax.* (A9)
1 1

alo_ h0-_- a-_-= _ h3-_, hz_, -h a_,

• +h2 _ +hi i_i-,_x*ax* , _x_axt ax_ox*

• + ho i_ I\Sx* ax* + 8x* 3x:_ Ox* 8x* + T_3 (AIO)

where Ttn'S are given in Appendix C.

• ;&

'd"
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APPENDIX B

Expressions of Rdn in the Dynanlic Free Surface Condition

t •
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APPENDIX B

Expressions of Rdn in the Dynamic Free Surface Condition

1 aCn (B1)

_ + hog* 8'7" = Rdn

I.
e (BZ)

Rd0 = 0

: 1 zr_,,,ho) NZ_%_osi_)_o,

+ _ i= I \Sx.*.' hZ0+ _ "_-*z*] h_ + T_I (B3)
l

e ' _ _*1 g*th_ * + 2hlh0_ _)

Rdz =" hZog* 1 "_- + hzg*_ + _0
g

• ,:,

+ _)z* _)"_ h0 + hlh0 \"_z*/ + Tc_2 .) (B4)

{[4:

= - -- --+ hz--+ h3 + g*[Zhlh0t _ + (Zhzh0+hZl) _

1 h_) _._ " + (hzh0 ++ [(hzh0+ -2 '= 1 Ox._ _Y* _ .':.'

=--.--+ 2hlho i 8x.* 8z* 8z* i= 1 8x,.* _x.*I X 1

,N

+ 8z* 8z* + "2" 1 _)x.* ax.* _" \Sz*/ + T¢_3 _,,,
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APPENDIX C

Expressions of Rkn in the Xinematic Free Surface Condition

7.:

_{.:%

)..*

tee
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APPENDIX C

Expressions of Rkn in the Kinematic Free Surface Condition
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= 8x._ 8x.*Sz* _ h08x* ax._Sz* 2 g_
1 1 1 i

2 , az,; a_; az,Tog; h az*; agT )
I I 1 1 I I

az* 3 6 8z* 4

az,----_+ az,3j--_-- Laz,---2h0--hlaz,z az,Z hz] gO

(clo)

where Tkn'S are the added teri._,s due to expansions from z : _ to z : 0.

b

• -/
,#

,17_,

I I
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APPENDIX D

Expressions for _(2, s) nd f(Z,c)_nma a nma

i •
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APPENDIX D

Expressions for f(Z,s)and f(Z,c)
nma nma

s) _fm(0, c) cO 1 Ff N+2: Z -'_ %,_,,mClS • Z (6n,_- I - 6n, 1-

..(1,s) 1 a,(O,c) co 1- 6n,_-_) _,m "_-'_,. Z --r f*k_m*mdS"
m=l amF

N+ 2 (1, s) 1
Z (6n'l+l -6n, l- 1 +6n, l-l) _,m "71-1

_(O,s) oo I /_ N+Z__x = I Ct2rn _mdS" )'- _" (6n' + 6n' -

5n,l_l) .(1.c) (0, s'_ (0, cl 1 FJ" . 1- *i, m - _i, k 4P1, k "-'_- qJkZ<umds _ 6n, Z
• a m

-h0_l, k N k_--_- ds N --_-(5n,i+i -$n, I I
m am F =

(I,_) h .(o,s).,(O,_)_hFfq_ I6n, l.--l)4Pi,_ - l_l,k _e],k a2rn *m ds'-6 Z n,Z

az_,k N+ Z .(0, c)_(l, s)
co I f _#mdS _ _l,k _I,_ (6n,I+I- _ _d

h_g*_*= 1 aZm F az .2 I=I

+ 5n,/- I - 5n, 1 -1 ) (D1) f

• 3"/

]96600290 ] -052
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APPENDIX E

Expressions for f(2,s) and f(Z,c)
In, n m, n

%

|/
,. t....... i,, ,

1
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.(O,c) oo f N+I (1,c)" q>l, k 7, ;k'::X2_1x_= 1 k toni Cm%bkq_mds Z 4,i, m (. 6
-m F _=1 n,f+l

l '(0'c) o° I f _i l'(l'c)
+Sn,_- 1 - 5n, l._)_ "q'l,k 23 k_'k*_

=1

(Z,s)
-_ (6n, l+ I + 5n,_- 1- 6n, 1 - f) + fn, ma (El)
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oo f N+I_. _,(i,s)1 [
"_l,k r__-I _=1

, 8n,I- I+Sn,l-i.]T+ _On

oo N+I

= 1 k ff-i 2 q'm --qJff_ds 1= 1am

+ 6n,I- I+5n,I-I + f na (E2)
1 + 8On

The last term is given in Appendix D.

m

, , . . , ,_m_ _ _ , ,, ....... J
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APPENDIX F

.Evaluationof Ho_, (P'3)

I

,¢

j:
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APPENDIX F

Evaluation of How (P,I)

Let GO be the unit sink

1 1
G O (P,I)= -- = = Go(r,_,O;r_,¢',O')(FI)

4_Rpi 4_4 rZ+ r,2_ 2rr'cos_

cos7 = cos_cos_' + sincrsincr'cos7 (F2)

"y = O-O' (F3_

/'/"HAy (P--,I-) = 1 Go 10, P'; cos_;_ cr'lcosll,O)cos(v'O )dO'dO
(I+ 6ov)_ 0 0

/-= GO (p, p'; cosT;_, _') cos (vT) d7 (F4)
0

Let_ ={, _' = _rZ - p _nd change the other primed quantities to variables

with subscripts I and the unprimed to variables with subscript P.

! /IZ
- cos(z_s)dp
H°v (P'I')- _ 0 [rZ+ r'2- Zrr'cos(¢-¢')+4rr'sin_sin¢'sinZ_]I/Z

//'-_ I_ (- IlVcos (Zv0')d_' (F51

0 st,4_-qZslnZp,
where

= I- Z r zRtl Wrp+ . - rprlCoS(_p +_i ) (F6)

_ 4rprl s.in_p sin_I
%! = (F7)

Rt!

- i i i , i i 11 i
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From formula No. 484 of Reference 21, one has

cos (2_6) = _. arm sinZm_ (F8_
m= 0

whe re

avo = 1 for m = 0 (F9a)

..(. l)m 22m- l(v+m_ I)' for m > I (F9b)arm -
(Zm): (v- m). _

Using Equation (F8), :"

1 v

_ _. av_. V_.(_l) (F10) :_
Ho-_ Rtl_ i,= 1

whe re
:

It sinZFZ_3 d_ (FII) ?

V_ (ql) : _'I- qlZsinZp- 0 :
!

Using the reduction formula on p. 59-60 of Reference 2Z

(2_ l)qz 2_- Z) (I+ qlz)VFz_ I- (Z_ - 3)V__ (Fl2a)

,/IZ dp (FIZb) : .!
V o = K (0.i)= 4"I - qlZsin2_

V1 = 1._ [E(o.I1_ K(O.l)]_ Dlql ) (FlZc) " _'

As _i---0, the above formula (FlZa) appears singular, but it should be : - ._,: :-'.'J

finite, so a precision problem would be encountered for _1 small. How- a _':

ever, the binomial expansion of the integral leads to _._,

V_ _. Cn I/Z Zn, l n _ rln+_.+ l/Z) ':
° n=o il

5
i i

] 96600290 ] -060



51

where the binomial coefficient (No. 189, Ref. ZI)

1 1 1 (_Z n+ l_._ -_(-_-l) .... z- " z 3-5 (Zn-l_
- CnZ = r_! = 2. 4" 6 ..... (2n) - (-l)n n>_l

1 (F14a)

Z
Co - 1 (F14b)

and the quotient

r_.+_+_) _ 1-3-5--- (z_ + z.- i; -_ (F15:
2 l'(n+_+ I) Z - 4 • 6 - - - (2_ + 2n) 2

Equation (FI3) can be employed for q_ small.

-m

,!

.°

' . _" • L_' ' .il i i i Ill I i I I i | ile ,imiH i i i]i i I i I BHI
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APPENDIX G

Evaluation of F o_,(flI)

d

,1

i iii i i i [ ii i i i i i i i i
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APPENDIX G

Evaluation of For (Q, I)

m

The definition of For is

_r 8Go(rQ, r F c°sT,_ri: _Q)6 _nI

which is nonsymmetric.

For an axial symmetric tank

aG o 8G o 8G o

8n---_ = cOs(hI" rI)_)r--_ + c°s(nI'qrI) r--_-_ (GZ)

1

cos(n, r) = l dr 2 (G3)

1 dr

cosln, _} = _rd_r

r_ (G4a)

RtZ = _]'r_ + rz - 2rQricos(_ Q + ,'i) (G4b)

J dr I 2

q2 = q 4rorlsin_Qsinvl /Rtz (G4d)

__ 7f 0"
2 Z (G4e)

1966002901-063
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From Equations (G1) and (G2), by integration, i, is found that

I /Vglcos(v_)+ gzcosZ_cos(v_)

_°v(I' Q)=- 4"-'_ 0 [l_q2sinZ_] 3/2 do"

{ , % iv%,
1

avmUm( )+g2 Z arm mg-m= 0 m= 0
w

where

dr I

gl = [rl- rIrQC°S(¢I -CO )-rl-_ sin(h-¢O)]/(Rt3Rt3z ) (G0a) -'

gz = [ 2rIrQsin_rI sin_Q - 2r I dr-_I sin_Isincro]/(Rt3Rt3z) (G6b)
do-I

Vm(_2) is defined in the previous Appendix, replacing _1 to _2

v/2 sin2m_d_ = I [Um l(O2)_V m l(q?)] (G6c)
Um (c_2)= f (1 q._sin21_)3/2 _ -0 -

E(q2 }

U° (q2) = -_2 ' V° = K (_2) (G6d) _ ._1-q - .%

:_ .,-

from reduction formulas in Reference 22. _

It is noted that ¢%2= I is only an apparent singularity which is : " _
,_

finite when multiplied by gl or (1 - ¢_) in Equation (G5). _ _-i_,_%

In order to have higher precision as _2--_0, one ,._ay use . L_.-,:''_:_.

binomial expansion again, " "!i'_

3 l_n + m+ "_Y

co "-- n(. l)n Q-it 1) " :":!"_::_
Um(¢_2 ) = _. Cn 2 qZ2 _ 'm= 0 2 F (n_m+ I) (GT)

,4
] I [ [ I [ [ I [l[l_ [ I [ [ I I ][ [ [ [1[ I [ I[ [[1.[I _ 2T
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3 3 3 _ 1"_-_ -_(-_-1) _. _ (-=-_n+ /

C n = - n!

1. 3. 5 (2n + 1)
(- 1) n (G7a)

2. 4- 6 (Zn)

3
2

C O = 1 (GTb)
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ERRATA - September Zl, 1965

The following corrections are applicable to Technical Report No. 5

Contract No. NASB-II045, SwRI Project No. 0Z-1391, titled "Subharmonic

Oscillations in an.Arbitrary Axisymmetric Tank Resulting from Axial .;
Excitation, " {September 1965):

I. Following page 5 before "Method of Perturbation, " the following

paragraph was inadvertently left out:

When the frequency is not given, the amplitude of the

linear first harmonics can be a prescribed constant.

The frequency response curve is determined by :'

varying this constant.

,t
Z. In the last term in Equation (10), _m should be _Jm o • ,.:_

3. In Equation (Z0a), _i should be 4_ . ._-
J

4. In Equation (Z5a), *m should be _k" )ii

5. In Eqvations (38e, f), the first Td(1, 'rn_') should be Td n(l',mC)" -_,_

-(I,s), i6. In Eouat,on (41a), the _Zmr(l' s) in the Znd line should be L2 ' _,
i

_(1, c) and k* on the 4th _ ;the 4p 1,mC) on the 3rd line should be v2,_ m :._.

line should be X*_..

7. In Equation (60c), " (o) should be - (o) " '_::"
mo H° ij ' _:

._ ._;_

8. In Equation (61), the _ov on the second line should be Ho_,. _';'_

4 ,1,:,,

i ':::F

r,,,i H HI iii ,i HI 'I I 'IF I II II -- :: - - i i'_ _'_
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